				PHYSICS	
(Class	PUC 2 nd Y	r.		
Т	Горіс	Class work	ζ		March 2014
1.	•	-		ten to a height above the grouty. The frequency of oscillation (C) f/2	nd and then dropped along with its n of the falling pendulum is (D) zero
2.		s accelerating		simple pendulum inside a static ecceleration of g/3, time period (C) $T/\sqrt{3}$	onary lift and finds it to be T. If the d of the pendulum will be (D) T/3
3.	A car is coming down an inclined plane without friction. If the inclination of the plane is 30° with th horizontal and a pendulum is suspended from the roof of it, what will be its time period of oscillation, if has a period T when suspended from the roof of a stationary car? (A) (B) (C) (D)				
4.	-	illated. If the		-	w immersed in a non-viscous liquid e period of the same pendulum will (D) T
5.	_	_		a metal bob. If the bob is chaplaced under it, the frequency (C) 3f/2	arged negatively and is allowed to will be (D) zero
	(A) I		(B) $\frac{1}{2}$	(C) 31/2	(D) ZeI0
6.	is now	cut into two e		e same mass is suspended from	vertical oscillation is T ₁ . The spring m one of the halves. The period of
	(A) 1/2		(B) $1/\sqrt{2}$	(C) 2	(D) $\sqrt{2}$
7.	An S.H.	.M is given by	$y = 3 \sin 3\pi t + 4 c$	os3πt where x is in meters and	d t in sec. The amplitude of motion
	(A) 3		(B) 4	(C) 5	(D) 7
8. Two springs of equal length and cross sectional areas are made of material whose Your the ratio 3: 2 they are suspended and loaded with the same mass. When stretched and it oscillate with periods in the ratio of					-
	*(A) √ ((3/2)	(B) 3: 2	(C) $(3\sqrt{3})/(2\sqrt{2})$	(D) 9: 4
9.	A particle is executing linear S.H.M of amplitude A. What fraction of the total energy is kinetic when the displacement is half the amplitude?				
	(A) $\frac{1}{4}$		(B) ½	(C) 3/4	(D) $1/2\sqrt{2}$

- 10. At what displacement is energy of an oscillator half kinetic and half potential?
 - (A) A/4
- (B) A/2
- (C) A/ $\sqrt{2}$
- (D) $A/\sqrt{3}$

When the force is $F = -kx^n$ and k is a positive constant, the value of n will decide what will be the motion.

If n is even, force is always negative and the motion cannot be oscillatory.

If n is odd, force is negative for values of x that are positive and force is positive for values of x that are negative and force is zero for x = 0. Thus the particle will oscillate about stable equilibrium position x = 0. The force is called restoring force. If n = 1, the motion is S.H.M

S.H.M is possible if $\frac{d^2y}{dt^2} = -y$

Kinetic and potential energies in S.H.M are periodic with frequency double that of the particle but not S.H.

Total energy is constant and does not oscillate.

A function is said to be periodic with the time period T if f(t + T) = f(t)

The time period of a simple pendulum for small oscillations is $T=2\pi\sqrt{\frac{l}{g}}$. Due to change in temperature,

length changes and so does the time period. $\frac{T^1}{T} = \sqrt{\frac{l^1}{l}} = \left(1 + \alpha \Delta \theta\right)^{1/2} = \left(1 + \frac{1}{2}\alpha \Delta \theta\right)$

 $\Delta T = \frac{1}{2} T \alpha \Delta \theta$. Pendulum loses time if T increases. Time lost or gained in time t is $\Delta t = \frac{\Delta T}{T^1} t$

Suppose T=2 and $T^1=3$ then the time lost by the clock in 1 hr. is (1/3)3600=1200 s

For large amplitudes the calculation is more complex and is $T = 2\pi \sqrt{\frac{l}{g} \left(1 + \frac{A^2}{16}\right)}$ where A is the amplitude in radians.

$$T = 2\pi \sqrt{\frac{1}{g\left(\frac{1}{l} + \frac{1}{R}\right)}}$$
, if the length of the pendulum is comparable with the radius of the earth.

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{l}{g}}$$
, where *l* is the elongation in the spring when the mass m is suspended.

If the spring has the mass m_s the time period is $T = 2\pi \sqrt{\frac{m + \frac{m_s}{3}}{k}}$

If there are two masses connected by a spring and oscillating on a horizontal surface $T=2\pi\sqrt{\frac{\mu}{k}}$,

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$
 is the reduced mass.

Force constant k is inversely proportional to the length of the spring.

11. Find the period of the function, $y = \sin \omega t + \sin 2\omega t + \sin 3\omega t$

Ans: $2\pi/\omega$

12. A linear harmonic oscillator has a potential energy of 50 J at its mean position. It has a total energy of 200 J. Find maximum kinetic energy, minimum potential energy, and maximum potential energy.

Ans: 150, 50, 200

13. The potential energy of a particle oscillating along the x-axis is given by

$$U = 20 + (x-2)^2$$

Where U is in joules and x in meter. Total mechanical energy is 36 J.

State if the motion is S.H

Find the mean position.

Find the maximum kinetic energy of the particle.

14. A particle moves under the force $F(x) = x^2 - 6x N$, where x is in meters. For small displacements from the origin what is the force constant in the S.H.M approximation?